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Upper bound to the expectation value of the squared
Hamiltonian
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An upper bound to the expectation value of the squared Hamiltonian 〈H 2〉 is derived which
relies on replacing products of certain operators with products of the matrix representations
of said operators to reduce the computational demands of 〈H 2〉. An example is given which
shows the strength of the bound and an application with the Temple lower bound is shown.
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1. Introduction

Calculation of rigorous upper bounds using the variational method is straightfor-
ward. Rigorous lower bound calculations, however, are plagued with many difficulties,
both theoretical and calculational. There exist many different lower bound methods [1]
and each has their own unique problems and areas where they excel; unfortunately, there
does not currently exist a method that is widely practical. One problem that is shared
by many lower bound methods is the calculation of difficult integrals that make up the
expectation value 〈H 2〉, i.e., of the squared Hamiltonian. Variational calculations, on the
other hand, require only the much simpler calculation of 〈H 〉. Some perturbative meth-
ods [2–4] and variational methods [5] require the calculation of 〈H 3〉 and even more
difficult integrals. The ideas presented here for 〈H 2〉 can be extended to 〈H 3〉 and more
complicated expectation values.

Because of the difficulty in the calculation of 〈H 2〉, bounds to this value are highly
desirable. A simple lower bound is 〈H 〉2, which results from the Cauchy–Schwarz in-
equality; however, eigenvalue lower bound methods require an upper bound to 〈H 2〉.
Two “relatively” widely-used lower bound formula are the Temple [6] and Weinstein [7]
bounds. The Temple bound takes a trial function and gives a lower bound to the ground-
state eigenvalue, E1, when a lower bound, Elow

2 , to the first-excited state eigenvalue, E2,
is already known:

E1 � Elow
2 〈H 〉 − 〈H 2〉
Elow

2 − 〈H 〉
. (1)
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The Weinstein bound produces an interval in which there lies at least one eigen-
value:

∣∣En − 〈H 〉
∣∣ �

(〈
H 2

〉− 〈
H

〉2)1/2
. (2)

Both bounds require calculation of 〈H 2〉 or an upper bound to this value. Even in the
relatively simple system of the lithium atom, extensive background work [8–10] devoted
to analytically solving the integrals composing 〈H 2〉 was necessary before actual lower
bounds could be calculated [11,12]. One option to analytic solution of the integrals is
numerical methods, such as Monte Carlo methods, which have proved very successful
in some applications [5].

2. Simple case for 〈H 2〉
We now present an upper bound to 〈H 2〉 which eliminates some, but not all, of the

difficult integrals required in the calculation of 〈H 2〉. We consider H to be the Hamil-
tonian of interest (with eigenvalues En and eigenfunctions ψn) while h is an exactly
soluble base Hamiltonian that is perturbed by the perturbation p to become H :

H = h+ p. (3)

The base Hamiltonian h (with eigenvalues en and eigenfunctions fn) is often a
simple Hamiltonian; in the case of atoms, it may be the sum of the one-electron kinetic
energy operators and the nuclear–electron attraction operators. The perturbation p would
then be the electron–electron repulsion operators.

We first evaluate 〈H 2〉 using the decomposition H = h + p and one of the eigen-
functions fn of h (with eigenvalue en):

〈
fn

∣∣H 2
∣∣fn

〉= 〈
fn

∣∣(h+ p)2∣∣fn
〉

= 〈
fn

∣∣h2 + hp + ph+ p2
∣∣fn

〉

= e2
n + 2en

〈
fn|p|fn

〉+ 〈
fn

∣∣p2
∣∣fn

〉
. (4)

For this special case of fn, integrals of h2 and hp are completely avoided. Although 〈H 2〉
can be calculated rather easily, the goal is to use 〈H 2〉 in, say, the Temple formula to get
a lower bound to E1. In this case f1 is usually a poor approximation to ψ1 unless the
perturbation p is very small, and the lower bound to E1 will be poor as well. Even more
important is that the solution to a base Hamiltonian is usually not known. For atomic
systems, two reasonable exactly-soluble base Hamiltonians [13,14] are known while for
molecules only the unreasonable united-atom base Hamiltonian is known. To get a good
lower bound to E1 we must use a trial function that well approximates ψ1. This will usu-
ally be a variationally-determined function instead of the ground-state eigenfunction of
a base problem. If the variational space is a subset of the base-Hamiltonian’s eigenspace
then the variationally-determined function will be a linear combination of base Hamil-
tonian eigenfunctions; although (4) gets more complicated, one still avoids the basic
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integrals of h2 and hp. Often a subset of the base Hamiltonian’s eigenspace is inade-
quate as a variational space and a different variational space must be used. In this case a
trial function that is not a linear combination of base Hamiltonian eigenfunctions results
and (4) does not simplify fully and expectation values of h2 and hp must be calculated.

3. Upper bound to 〈H 2〉
We now use an alternate decomposition of H :

H = η + π, where η = h+ PpP and π = p − PpP, (5)

where the operator P is the projection onto the subspace S formed from a variational
basis set. We no longer require h to be exactly soluble. This alternate base Hamil-
tonian η, when restricted to the variational subspace S to become η|S, is recognized to
be the matrix representation of H on S. Thus the eigenvalues and eigenfunctions of η|S
are those of the variational calculation, η|Sφn = εnφn, although ηφn produces a function
that may partially exist outside of S. Again we evaluate 〈H 2〉, but this time using the
decomposition H = η + π .

〈φn|H 2|φn〉 = 〈φn|(η + π)2|φn〉
= 〈φn|η2 + ηπ + πη + π2|φn〉
= 〈φn|η2|φn〉 + 2〈φn|ηπ |φn〉 + 〈φn|π2|φn〉. (6)

The first and third terms on the right-hand side expand to give:

〈φn|η2|φn〉 = 〈φn|(h+ PpP)2|φn〉
= 〈φn|h2 + h(PpP )+ (PpP )h+ (PpP )2|φn〉
= 〈φn|h2|φn〉 + 2〈φn|(PhP )(PpP )|φn〉 + 〈φn|(PpP )2|φn〉, (7)

〈φn|π2|φn〉 = 〈φn|(p − PpP)2|φn〉
= 〈φn|p2 − 2p(PpP )+ (PpP )2|φn〉
= 〈φn|p2 − (PpP )2|φn〉. (8)

The middle term of (6) requires a bit more work. Although η|Sφn = εnφn, we have
ηφn = εnφn+φ⊥ where φ⊥ is a function orthogonal to S. Thus the middle term expands
to give:

〈φn|ηπ |φn〉 = 〈ηφn|π |φn〉 =
〈
εnφn + φ⊥

∣∣π |φn〉 = εn〈φn|π |φn〉 +
〈
φ⊥

∣∣π |φn〉. (9)

Since π = p − PpP and φn ∈ S, we have that 〈φn|π |φn〉 = 0 which simplifies (9) to

〈φn|ηπ |φn〉 =
〈
φ⊥

∣∣π |φn〉. (10)

Using the Cauchy–Schwarz inequality we can bound the term 〈φ⊥|π |φn〉 as follows:
∣∣〈φ⊥

∣∣π |φn〉
∣∣ �

〈
φ⊥

∣∣φ⊥
〉1/2〈φn|π2|φn〉1/2. (11)
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The value 〈φ⊥|φ⊥〉 can be determined from

〈φn|η2|φn〉 = 〈ηφn|ηφn〉 =
〈
εnφn + φ⊥

∣∣εnφn + φ⊥
〉 = ε2

n +
〈
φ⊥

∣∣φ⊥
〉

(12)

so that
〈
φ⊥

∣∣φ⊥
〉 = 〈φn|η2|φn〉 − ε2

n. (13)

Inequality (11) and equation (13) are combined and used in (10) to provide an
upper bound to 〈φn|ηπ |φn〉. This is then used in (6) to give an upper bound to 〈H 2〉:

〈
H 2

〉
�

〈
η2

〉+ 2
(〈
η2

〉− 〈
H

〉2)1/2〈
π2

〉1/2 + 〈
π2

〉
, (14)

〈
η2

〉= 〈
h2

〉+ 2
〈
(PhP )(PpP )

〉+ 〈
(PpP )2

〉
, (7)

〈
π2〉= 〈

p2〉− 〈
(PpP )2

〉
, (8)

where we have used 〈H 〉 = εn and all expectation values are evaluated using φn. Expec-
tation values of h2 and p2 are not avoided, as they occur indirectly through (7) and (8),
but expectation values of hp are replaced with expectation values of (PhP )(PpP )
which are products of the matrix-representations of h and p on the chosen basis set.
These matrices have already been constructed from the upper bound calculation (or at
worst, all the integrals have been computed in the case that the matrices are not stored in
memory). The operator (PhP )(PpP ) is just the product of two matrices. Similarly, the
operator (PpP )2 is just the square of the matrix PpP .

4. Numerical example

To illustrate the quality of the bound we consider the isotropic harmonic oscillator:

H = 1

2

(−�+ r2), (15)

where � is the Laplacian and atomic units are used. The simplest decomposition of the
Hamiltonian is: h = −1/2� and p = 1/2r2 which then defines η and π . The basis set
for the calculations is the following set of N + 1 functions:

φn =
√
n!(n+ 2)! e−r/2

n∑

k=0

(−r)k
k!(k + 2)!(n− k)! , (16)

where n = 0, 1, 2, . . . , N . This basis set is a truncated complete set; being built of expo-
nentials it will need a large number of functions to approximate the exp(−r2) behavior
of the true eigenfunctions of H . Table 1 shows 〈H 〉, 〈H 2〉 and the upper bound to 〈H 2〉
as a function of the size of the variational calculation, N . Also reported is the percent
difference between the upper bound and exact value of 〈H 2〉. Figure 1 plots the percent
difference vs. N . Although our bound on 〈H 2〉 is poor for most low N (there are a few
exceptions in the data) this is where 〈H 2〉 is not so difficult to calculate. As the dimen-
sion of the basis set increases then 〈H 2〉 becomes more computationally expensive and
thus a bound to 〈H 2〉 is more important. This is where our bound is best – at large N .
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Table 1
The upper bound and exact value of 〈H 2〉 are calculated for different size calculations.

Atomic units are used.

N 〈H 2〉 Upper bound to 〈H 2〉 Percent difference (%) 〈H 〉
0 90.0781 95.2524 5.7 6.12500
5 4.4314 5.59359 26 1.80415

10 5.21508 5.53359 6.1 1.52428
15 2.69785 3.00818 12 1.50629
20 2.53278 2.57952 1.8 1.50084
25 2.28865 2.31841 1.3 1.50029
30 2.28639 2.28945 0.13 1.50006

Figure 1. The percent difference between the upper bound and exact value of 〈H 2〉 is plotted versus N .

This behavior of the bound is suggested, not only by our numerical example, but
by an examination of the difference between the upper bound (14) and the true value of
〈H 2〉, which is:

〈
H 2

〉up − 〈
H 2

〉 = 2
(〈
η2

〉− 〈H 〉2)1/2〈
π2

〉1/2
. (17)

As the variational subspace increases 〈η2〉 approaches E2
1 while 〈H 〉 approaches E1 so

that the term 〈η2〉 − 〈H 〉2 approaches zero. Furthermore 〈π2〉 = 〈p2〉 − 〈(PpP )2〉
approaches zero since, as the variational subspace increases, PpP approaches p. Thus
the right-hand side of (17) is the product of two terms that are approaching zero.
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Table 2
The upper bound and exact value of 〈H 2〉 are calculated for different size calculations. Atomic units are

used.

N Our lower bound Temple lower bound Percent difference (%) Variational upper bound

0 NA NA NA 6.12500
5 0.04230 0.66077 94 1.80415

10 −0.10052 0.06069 270 1.52428
15 1.13548 1.29114 12 1.50629
20 1.33726 1.36064 1.7 1.50084
25 1.46652 1.48140 1.0 1.50029
30 1.48042 1.48196 0.10 1.50006

5. Application to Temple lower bound

In table 2 we compare the lower bound to E1 = 1.5 hartree for the isotropic har-
monic oscillator of section 4 calculated using the Temple lower bound (2) with the exact
value of 〈H 2〉 and with our upper bound to 〈H 2〉. We use the exact value E2 = 3.5
hartree for Elow

2 in (2). When N = 0, the variational upper bound exceeds E2 so that the
Temple lower bound cannot be used: 〈H 〉 < E2 is necessary. The difference between the
lower bounds generally decreases as the dimension of the variational subspace increases
as expected since the difference between the exact value of 〈H 2〉 and the upper bound
follows the same pattern.

6. Summary

We have proposed an upper bound to 〈H 2〉 which lessens the computational de-
mands of 〈H 2〉, although is unfortunate that the quality of the bound is not guaranteed
to improve as more computational effort is expended. The bound requires separation of
H into two components. The simplest decomposition is to group all of the differential
operators (i.e., the kinetic energy operator) into h and all the multiplicative operators
(i.e., potential energy operator) into p as was done in section 4. This requires the need
to calculate integrals like 〈h2〉 and 〈p2〉 but not 〈hp〉 which combines the differential
and multiplicative operators together. Our upper bound replaces 〈H 2〉 in an application
of the Temple lower bound and the resulting bound was competitive with the Temple
bound.
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